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Abstract. Vacuum polarisation potentials of extended charge distributions are calculated 
using an efficient Fourier-Bessel method for the evaluation of folding integrals. In order 
to obtain a well defined and a quantitatively correct picture of vacuum polarisation effects, 
these potentials are employed to yield vacuum polarisation charge densities via Poisson’s 
equation of classical electrostatics. 

1. Introduction 

Quantum electrodynamics modifies the Coulomb interaction between two static charges 
by radiative corrections, which are usually interpreted as arising from the polarisation 
of virtual electron-positron pairs. These so-called vacuum polarisation effects are 
significant only at short distances, that is at distances shorter than the Compton 
wavelength of the electron. The usual explanation of the vacuum polarisation effects 
invokes a screening of an electric charge by the virtual electron-positron pairs, the 
screening being such that it becomes progressively less effective, and so the effective 
strength of the interaction increases, as the distance to charge decreases. 

It is sometimes contended, however, that this intuitive picture of the vacuum as a 
polarisable medium is not correct, because the polarisation charge induced in the 
vacuum around, say, a positive electric charge looks in fact more like that induced by 
a negative charge in an ordinary dielectric, in that a positive charge induces around 
itself a positive vacuum polarisation charge. As an explanation of this strange 
behaviour, it could be then argued that vacuum polarisation should be pictured as 
arising from the interaction with negative-energy electrons and positrons in the Dirac 
sea. Negative-energy electrons should be seen as being repelled, and negative-energy 
positrons as attracted, by the positive charge that polarises the vacuum. 

Thus conflicting pictures, such as those given in figure 1, can be found in the 
literature (e.g., see [ l ,  21). These pictures obviously cannot refer to the same physical 
situation. Presumably, the distinction between the ‘bare’ and observed electric charges 
is important in this connection. It should be possible, however, to go beyond such 
qualitative and often ambiguous pictures by calculating polarisation charge densities 
from the vacuum polarisation potentials of observed, renormalised electric charges. 
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Figure 1. ( a )  A positive electric charge in the vacuum which is pictured as a polarisable 
medium of virtual electron-positron pairs (as, for example, in [ I ] ) .  ( b )  A positive electric 
charge in the vacuum which is pictured as a polarisable sea of negative-energy electrons 
and positrons (as in [2]). 

Polarisation charge densities obtained in such an unambiguous procedure should 
provide a quantitatively correct picture of vacuum polarisation effects. 

The purpose of this paper is twofold. First, it is to employ the powerful momentum- 
space techniques that are available for an efficient and accurate evaluation of folding 
integrals in a calculation of vacuum polarisation potentials of extended charges, such 
as nuclear charge distributions, for which vacuum polarisation can be quite important 
in atomic and heavy-ion physics. Second, it is to provide a quantitatively correct 
picture of vacuum polarisation effects by calculating polarisation charge densities from 
these potentials using Poisson's equation of classical electrostatics. The case of a 
point-charge distribution can be then investigated as a limiting case of an extended 
charge distribution. 

Sections 2-4 of this paper give the formalism for the calculation of the first-order 
vacuum polarisation energy, and its corresponding polarisation charge density, due to 
two extended charge distributions. In § 5, the numerical results for some typical nuclear 
charge distributions are presented. The results are discussed and conclusions are drawn 
in $6. 

2. Vacuum polarisation energy 

The radiative correction to the Coulomb potential energy of two point electron charges 
e, separated by a distance r, is given to first order in the fine structure constant 
(Y = e2/ hc = 1/137.036 by the so-called Uehling potential [3] 

Here, Ae = h / m , c  = 386.159 fm is the reduced Compton wavelength of the electron and 
the function x l ( x )  belongs to a class of functions defined by the integrals 
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These functions can be expressed as [4] 

,y,,(x) = Kin-l(x) -tKi,+,(x) -iKin+3(x).  (3) 

Here, the functions Ki,(x) are defined [ 5 ]  as repeated integrals of the modified Bessel 
function Ko(x), and it follows from their properties that one can express the functions 
x,(x) in terms of the modified Bessel functions Ko(x) and K,(x) and the Bessel integral 
Ki,(x), for which accurate and efficient approximations in terms of Chebyshev poly- 
nomials are available [ 6 ] .  Thus, for example, x l (x)  is given as [4] 

x, (x)  = A[ (12 + x2)Ko( x)  - x(  10 + x2) K,(x)  + x(9 + x2)Kil (x)]. (4) 

Similar expressions for other functions x,,(x), -3  s n S 4, are given in [4]. 
The potential energy V 2 ( r )  of vacuum polarisation due to two charge distributions 

Zlpl(rl)  and Z2p2(r2)  is obtained by folding the Uehling potential with the two 
distributions such that 

The coordinates are defined in figure 2. The densities p,(  r , )  and p2( r2) are assumed 
normalised to unity volume, and Z , e  and Z2e are the total charges in the distributions. 
The potential energy due to an extended charge distribution and a point charge is then 
obtained when one of the distributions has a density given by the 6 function 

p(  r )  = r ) .  ( 6 )  

A S function reduces the double-folding integral in equation ( 5 )  to a single-folding 
one. While essentially only single-folded potentials are going to be needed for the 
calculation of the vacuum polarisation charge density due to an extended charge 
distribution, the general formalism to be given here will cover the case of the vacuum 
polarisation energy due to two extended charge distributions. 

A direct evaluation of the double-folding integral in equation ( 5 )  can be quite a 
difficult task, because it involves in general a six-dimensional integration. Only in the 
special case of a single folding over a spherically symmetric distribution can the 

Pz(rz ) 

Figure 2. The coordinates used in equation ( 5 )  for the double folding over two distributions 
pl (r l )  and p 2 ( r 2 ) .  
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integration be reduced to a one-dimensional integral which, for a uniform charge 
distribution, can be solved in closed form [7]: 

Here, R is the radius of the uniform distribution, and the constant c and variables x, 
and x2 are defined as 

2(R + r) 2( R - r )  
x2 = ~ 

27r x e  

where Ze is the total charge in the distribution. Equation ( 7 )  can be useful as an 
analytical check of the results that can be obtained for this special case by a general 
momentum-space procedure to be described in P 3. 

3. Fourier integrals and Fourier-Bessel expansions 

A function that is obtained by folding has a very useful property: its Fourier transform 
is simply the product of the Fourier transforms of the functions appearing in the 
folding integral (e.g., see [SI). This property is the basis of the momentum-space 
techniques for the evaluation of folding integrals. In the present problem, assuming 
spherically symmetric charge distributions, one needs only to know the Fourier trans- 
forms of the Uehling potential and the two distributions, to be able to reduce the 
double-folding integral of equation ( 5 )  to a one-dimensional Fourier integral: 

The integrand involves the product of three Fourier transforms, each defined as 

f( k )  = [ drf (  r )  elk’‘ = 47r dr  r2f( r)jo( kr). lox 
Equation (9) is just the Fourier transform of the double-folding integral from the 
momentum space (k-space) back to the r-space. The Fourier transforms are expressed 
in terms of the spherical Bessel function j , ( x )  because the functions involved are 
assumed to be spherically symmetric. One can generalise equation (9) easily for 
non-spherical distributions [9]. 

The use of Fourier transforms in the present problem is particularly attractive, 
because the Fourier transform of the Uehling potential of equation (1) can be expressed 
in terms of elementary functions 

where 

s = [ 1 + (2/A,k)’]”*. 
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This result is obtained by performing the integration involved in the definition of the 
function xl( x )  (see equation (2))  only after first Fourier-transforming the function 
exp(-2rt/Xe)/r. The Fourier transforms of the functional forms that are most often 
used for nuclear charge distributions are also known analytically (see P 5 ) .  In any 
case, it is not difficult to calculate the Fourier transform of a charge distribution 
numerically, because the radial integral in equation (10) converges rapidly for a 
distribution of a limited radial extension. 

Some use of Fourier transforms for the calculation of the vacuum polarisation 
potential of two extended charge distributions has been described in [lo]. 

In practice, the folded potential is required for only a limited range of the radial 
coordinate r. The Fourier integral of equation (9) can be then replaced by a series 
expansion by employing a Fourier-Bessel expansion [ 111 of the Uehling potential: 

Such an expansion is valid only within some maximum radius R and the discrete 
values k, are such that k,R are the positive roots of 

ajo(x)+ bx dj,(x)/dx = 0. (13) 

The expansion of equation (12) is the simplest when the roots of equation (13) are 
taken either as nrr (that is when b = 0 in equation (13)) or as (2n - l ) r / 2  (when a = b). 
Then the coefficients c, in equation (12) are given by 

c = 2kZ, loR dr  r2 U (  r)j,( k,r) = - 4Cye2kn loR dr,yl(2r/Ae) sin k,r (14a) " R  3rrR 

where 

k, = nrr/  R or k, = f(2n - 1 ) r /  R. (14b) 
On writing the Fourier-Bessel expansion of the Uehling potential as 

1 "  
4r n - 1  

U ( l r +  rl - r2J) =- 

where use is made of the identity 

the double-folding integral in equation ( 5 )  is reduced immediately to a Fourier-Bessel 
series: 

The great advantage of equation (17) is that it replaces the Fourier integral of 
equation (9), which, in general, has to be evaluated numerically, by a discrete sum in 
which essentially only the number of terms controls the degree of approximation to 
the exact value of the folding integral. For the expansion of equation (17) to be valid 
for r up to some rmax, the radius R of the expansion of the Uehling potential must 
be at least 

(18) R = r m a x + R , + R 2  



3634 V Hnizdo 

where RI and R2 are the radii beyond which the charge distributions p l ( r )  and p 2 ( r )  
can be considered as negligible, respectively. It should be stressed that the coefficients 
c, in equation (17), defined by equation (14), involve the Fourier transform of the 
Uehling potential taken only up to r = R. This is somewhat unfortunate in the present 
case, because it does not seem to be possible to evaluate the finite-radius Fourier 
transform of the Uehling potential in closed form. However, this circumstance is still 
greatly outweighed by the advantages of the discrete-momentum formulation. Using 
the finite-radius Fourier transform 

(1 -e-CLR[cos k R + ( p / k )  sin kR]} 1 loR d r  r2 l j o (  kr) = - 
k2+w2 (19) 

e-w 

with p =2t/X,, one obtains for the expansion coefficients of equation (14): 
1 

c =% [- f i ( k , ) + ( - l ) , -  
R 4.rr 3 xk, 

with 
k, = f(2n - 1 )  x /  R. (206) 

Here, the finite-radius correction to the Fourier transform of the Uehling potential 
fi(k,,), given by equation ( 1  l ) ,  is expressed in terms of the integral 

( 1  ++ cos2 e) sin2 e. 
For large values of v, this integral has an asymptotic expansion 

Reference [ 101 gives a recursive scheme for the calculation of the functions x,(x) with 
n s -3. However, for all the values of v and p of our interest, the integral I ( p ,  v )  is 
easily evaluated with a good accuracy by a direct numerical quadrature. In any case, 
the finite-radius corrections are relatively small when the radius R is not too small, 
and in a given expansion one needs to evaluate only nmax of such integrals, where nmax 
is the number of the expansion terms required. 

At very small distances, the Uehling potential is approximated asymptotically as [3] 

where y = 0.5772 . . . is Euler’s constant, and in this approximation one can evaluate 
the coefficients of equation (14) in closed form: 

c, [(In 2- y -2) ( 1  -cos k,R)+ln(k,R) -Ci(k,R) + y . (24) 
3 xR 1 

Here, Ci(x) is the cosine integral (for approximations of Ci(x) see [6, p 1161): 

Ci(x) = y+ln  x +  dr(cos r - l)/r. (25) i: 
Unfortunately, for good accuracy, the approximation of equation (24) requires an 
expansion radius R that is not too small only on the nuclear scale. 
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The use of a discrete-momentum representation for the calculation of folded nuclear 
potentials has been described in [12]. 

4. Polarisation charge density 

The vacuum polarisation charge density that corresponds to a given vacuum polarisa- 
tion potential can be calculated as the charge density which would produce the potential 
according to the laws of classical electrostatics. The charge density p(  r) that gives rise 
to a spherically symmetric potential energy V(r) is given by the radial Poisson’s 
equation: 

1 
4 ne 

p(r)  = --V2V(r) = 

When the potential energy V(r) is obtained by a double folding over two extended 
charge distributions, one should not confuse the potential-energy equivalent density 
p(  r) of equation (26), which is spherically symmetric, with the non-spherical distribu- 
tion corresponding to a given two-centre configuration of the two extended charges. 

Thus to calculate the polarisation charge density, one requires the first and second 
derivatives of the vacuum polarisation potential. These are obtained easily by differen- 
tiating with respect to r the Fourier integral or the Fourier-Bessel series for the potential, 
equations (9) or (17) ,  under the integral sign or term by term, respectively. The required 
derivatives of the spherical Bessel function j o ( x )  are: 

d j ~ ( x ) / d x  = - j d x )  d2jo(x)/dx2 = j2(x)  - j l ( x ) / x .  (27) 
According to Gauss’s law of electrostatics, the polarisation charge within a sphere 

of radius r is given in terms of the first derivative of the spherically symmetric potential 
as follows: 

r2 dV(r)  
e d r  

q(  r) = 4 n  j: dr’ rf2p( r’) = -- - . 
The total amount of the polarisation charge, q ( r )  as r+co, is zero. 

5. Application and results 

The nuclear charge distributions of light nuclei are usually modelled by the modified 
harmonic-oscillator density: 

where 
pH( r) = po( 1 + b2r2) e-c2rz (29a) 

2 2  
= ~ ~ ’ ~ ( 2 c ~  + 3 b2) 

while those of medium-mass and heavy nuclei are most often modelled by the Fermi 
density: 

where 
pF(r) = po( 1 + e(r-R)/a)- l  (30a) 

n = l  
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The constants po normalise the densities to unity volume. The Fourier transform of 
the density of equation (29) is 

and that of the Fermi density of equation (30) [9]: 
X e - n R / a  

(32a) 8 "Po 
( n 2 +  u2kz)z p , ( k ) = F ( 2 t 2 c o s h x s i n  kR-tkR cos kR)-8ra3p0 (-1)" 

n = l  

where 

t = x i2  sinh x x = rka.  (32b) 

The Fourier transform of the 6 function, equation (6), is simply a constant equal to 
unity, while that of the uniform density of radius R, normalised to unity volume, is 

The uniform density can be regarded as the limit a + 0 of the Fermi distribution of 
equation (30). 

As examples, the potential energies of vacuum polarisation and the corresponding 
polarisation charge densities were calculated for the nuclei l 6 0  and *08Pb. The Fourier- 
Bessel expansion given by equations (17), (20) and (21) was used for the calculation 
of the potential energy, and the polarisation charge density was then obtained according 
to equation (26). A modified harmonic oscillator density with parameters 6 = 0.678 fm-' 
and c = 0.546 fm-' (root mean square radius ( r2)"* = 2.72 fm) was used for the charge 
distribution of l6O, and a Fermi density with parameters R = 6.62 fm and a = 0.549 fm 
((r2)1'2 = 5.52 fm) for "'Pb [ 131. For a six-digit accuracy in the potential energy and 
a three-digit accuracy in the polarisation charge density, about 40 terms in the Fourier- 
Bessel expansion were required in the radial range r < 20 fm considered. 

Figure 3 gives the calculated vacuum polarisation energy and vacuum polarisation 
charge density for the system e+ + I6O, which requires only a single folding. The energy 
is shown there both absolutely and as a ratio to the Uehling potential of equivalent 
point charges. The results for the realistic nuclear charge distribution are there com- 
pared also with those for a uniform nuclear charge density of radius R = 3.51 fm, which 
has the same mean square radius as the realistic charge distribution. The calculation 
with the uniform nuclear density was done using the closed expression of equation 
(7) and the derivatives dXn(x)idx = -xn-](x).  Figure 4 presents in the same fashion 
the double-folding results for the system I6O+ I6O. Here, all the calculations were 
performed using the Fourier-Bessel expansion. 

The results of similar calculations for the systems e' + "'Pb and I6O + "'Pb are 
shown in figures 5 and 6, respectively: The radius of the uniform charge density of 

Pb was taken as R = 7.13 fm to reproduce the mean square radius of its realistic 
charge distribution. It should be pointed out, however, that higher than first-order 
vacuum polarisation effects [ 71, which are neglected here, could become significant 
for a charge as large as that of the Pb nucleus. 

208 
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Figure 3. The system e++I6O. ( a )  The vacuum polarisation energy V,(r) as a function 
of the separation between the centres of the two charges. ( b )  The ratio of V,(r) to the 
vacuum polarisation energy of equivalent point charges, V ( r ) .  ( c )  The polarisation charge 
density p ( r )  corresponding to the energy V,(r). The full curves are for the calculations 
with a realistic charge distribution of the nucleus l60 and the dotted curves for those with 
a uniform charge density of the same mean square radius as the realistic distribution (see 
the text). 

6. Discussion and conclusions 

One can see from these results that the folding over the nuclear charge distributions 
modifies significantly the point vacuum polarisation energy only at distances close to 
or smaller than the sum of the root mean square radii of the two charge distributions. 
While these finite-size effects are relatively important in muonic atoms [ 141, they cannot 



3638 V Hnizdo 

I " '  1 

r . . . . I  
0 5 10 
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Figure 4. The system '60+'b0. ( a )  The vacuum polarisation energy V2(r) as a function 
of the separation between the centres of the two charges. (b)  The ratio of V2(r) to the 
vacuum polarisation energy of equivalent point charges, U ( r ) .  ( c )  The polarisation charge 
density p ( r )  corresponding to the energy V J r ) .  The full curves are for the calculations 
with a realistic charge distribution of the nucleus I6O and the dotted curves for those with 
a uniform charge density of the same mean square radius as the realistic distribution (see 
the text). 

play any significant role in heavy-ion scattering because of the predominance of the 
nuclear interaction and strong absorption in heavy-ion systems at these distances. 

The results obtained for the polarisation charge densities are instructive. The 
single-folding calculations presented in figures 3 ( c )  and 5 ( c )  give directly the vacuum 
polarisation charge densities due to the nuclear charge distributions of I6O and *08Pb, 
respectively. The essential feature of these polarisation charge densities is that a 
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Figure 5. The system e++'"Pb. ( a )  The vacuum polarisation energy V , ( r )  as a function 
of the separation between the centres of the two charges. ( b )  The ratio of V , ( r )  to the 
vacuum polarisation energy of equivalent point charges, U( r ) .  ( c )  The polarisation charge 
density p ( r )  corresponding to the energy V , ( r ) .  The full curves are for the calculations 
with a realistic charge distribution of the nucleus zoePb and the dotted curves for those 
with a uniform charge density of the same mean square radius as the realistic distribution 
(see the text). 

positive charge is induced within the inducing positive charge distribution, while a 
negative charge is induced outside it. Thus there is some resemblance to the counter- 
intuitive features of the sketch in figure l (b) .  It should be stressed, however, that the 
polarisation charge densities obtained in the present procedure are those of observed, 
that is already renormalised, electric charges. The 'bare' charge that polarises the 
vacuum is the observed positive charge plus the positive polarisation charge that is 
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Figure 6. The system I6O+ zoaPb. ( a )  The vacuum polarisation energy V,( r )  as a function 
of the separation between the centres of the two charges. ( b )  The ratio of V , ( r )  to the 
vacuum polarisation energy of equivalent point charges, U ( r ) .  ( c )  The polarisation charge 
density p ( r )  corresponding to the energy V z ( r ) .  The full curves are for the calculations 
with realistic charge distributions of the nuclei I6O and "'Pb and the dotted curves for 
those with uniform charge densities of the same mean square radii as the realistic distribu- 
tions (see the text). 

calculated as induced within it. The counter-intuitive induction of a positive charge 
inside a positive inducing charge is simply a formal consequence of our use of 
renormalised electric charges in calculating the polarisation charge density. 

The vacuum-polarisation charge density due to a point charge can be investigated 
now most easily as a limit of that of an extended charge, which can be taken for 
simplicity as having a uniform density distribution. The polarisation charge density 
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p(  r )  of a uniform charge distribution of radius R has a singularity at r = R: as r + R f , 
the density p (  r )  + T 03 (cf the polarisation charge densities of uniform charge distribu- 
tions for I6O and ’O’Pb, given by the dotted lines in figures 3( c)  and 5(  c), respectively). 
As the radius R decreases, the singlarity in the polarisation charge density at r = R 
moves closer to r = 0. In the limit R + 0, the polarisation charge density becomes 
highly singular at r = 0: for r + O +  the density approaches -03 as - F 3 ,  while at exactly 
r = 0 there must remain after an integration a positive logarithmic divergence, which 
keeps the total induced charge at zero. Formally, for very small r, one can write the 
polarisation charge density due to a point charge e, i.e. the Uehling polarisation density, 
as follows: 

Here, S( r )  is the one-dimensional S function and the limit E + 0 is understood to be 
taken after any integration. One can check easily that this density satisfies equation 
(28) for the cumulative polarisation charge when the asymptotic approximation for 
the point-charge Uehling potential, given by equation (23), is used. 

The ‘bare’ point charge that corresponds to an observed point charge e is then 
infinitely large, as it is the sum of e and the charge that is calculated as induced at 
r = 0, which is logarithmically divergent, being given by the integral of the first term 
in equation (34). The polarisation charge induced by the point charge in the region 
O <  r<o3 is logarithmically infinite too, but of the opposite sign. The total charge 
within a sphere of radius r >> &, which is the sum of the ‘bare’ charge and the charge 
induced outside r = 0, is the observed charge e. The subtraction of infinities in the 
renormalisation of a point electric charge in quantum electrodynamics can be thus 
explicitly exhibited. 

To conclude, vacuum polarisation potentials of extended charge distributions have 
been calculated efficiently by using a discrete momentum-space method based on 
Fourier-Bessel expansions for the evaluation of folding integrals. A well defined and 
quantitatively correct picture of vacuum polarisation effects has been obtained by using 
the procedure of calculating polarisation charge densities via Poisson’s equation of 
classical electrostatics. 
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